Processing math: 100%
Вы отправили работу на проверку эксперту. Укажите номер телефона на него придет СМС
Скачать .pdf

Экономические задачи

Ответами к заданиям являются слово, словосочетание, число или последовательность слов, чисел.

1
1

В прямоугольном треугольнике АВС известно, что ВС=2⋅АС. На гипотенузе АВ вне треугольника построен квадрат ABEF. Прямая СЕ пересекает АВ в точке О.

А) Докажите, что ОА:ОВ=3:4.

Б) Найдите отношение площадей треугольников АОС и ВОЕ.

2
2

Равнобедренный треугольник АВС вписан в окружность радиуса R, ∠АВС = α. Параллельно основанию АС проведена средняя линия, продолженная до пересечения с окружностью в точках М и N.

а) Докажите, что AB=2Rcosα2

б) Найдите отношение площади треугольника MBN к площади треугольника АВС, если ∠АВС = 60°

3
3

Внутри прямого угла АОВ проведён луч ОС. В угол ВОС вписана окружность, касающаяся лучей ОВ и ОС в точках В и С соответственно, в угол АОС вписана окружность, касающаяся лучей ОА и ОС в точках А и С соответственно. Радиус одной из этих окружностей в 3 раза больше радиуса другой.

а) Докажите, что если Р и Q — центры этих окружностей, то ∠POQ = 45°.

б) Найдите косинус меньшего из углов АОС и ВОС.

4
4

Радиусы двух окружностей с центрами О1 и О2, касающихся внутренним образом в точке А, равны 5 и 4 соответственно. Их общая секущая, проведённая через точку А, пересекает первую окружность в точке В, вторую — в точке С.

а) Докажите, что ABAO1=BCO1O2.

б) Найдите длину касательной, проведённой из точки В ко второй окружности, если дополнительно известно, что АВ = 1.

5
5

В треугольнике АВС ВА=8, ВС=7, ∠B=120°. Вписанная в треугольник окружность ω касается стороны АС в точке М.

а) Докажите, что АМ=ВС.

б) Найдите длину отрезка с концами на сторонах АВ и АС, перпендикулярного АВ и касающегося окружности ω.

6
6

Внутри прямого угла АОВ проведён луч ОС. В угол ВОС вписана окружность, касающаяся лучей ОВ и ОС в точках B и C соответственно, в угол АОС вписана окружность, касающаяся лучей ОА и ОС в точках А и С соответственно. Радиус одной из этих окружностей в 4 раза больше радиуса другой.

а) Докажите, что ОА = ОВ.

б) Найдите косинус меньшего из углов АОС и ВОС.

7
7

На диагонали AC параллелограмма ABCD отмечены точки Е и Р, причем АЕ:ЕР:РС=1:2:1. Прямые DE и DP пересекают стороны АВ и ВС в точках К и М соответственно.

А) Докажите, что КМ || АС.

Б) Найдите площадь параллелограмма ABCD, если известно, что площадь пятиугольника ВКЕРМ равна 30.

8
8

Две окружности с центрами О и О1 радиусы которых 2 и 6, касаются внешним образом, АС — их общая внешняя касательная.

а) Докажите, что угол СО1О равен 60°, где О1С — радиус, проведённый в точку касания.

б) Найдите периметр фигуры, образованной внешними касательными и внешними дугами окружностей.

9
9

На гипотенузе АВ прямоугольного треугольника АВС как на стороне построен квадрат вне треугольника.

А) Докажите, что прямая, соединяющая центр квадрата и центр вписанной в треугольник АВС окружности, проходит через точку С.

Б) Найдите расстояние между центром квадрата и центром вписанной в треугольник АВС окружности, если известно, что АС= 4√2, BC= 3√2.

10
10

Диагонали АС и BD трапеции ABCD взаимно перпендикулярны и пересекаются в точке О, причём АО • СО = ВО • DO.

а) Докажите, что трапеция ABCD равнобедренная.

б) Найдите радиус описанной вокруг трапеции окружности, если основания трапеции равны 6 и 8.

0 из 10
Ваш ответ Правильный ответ

Здесь появится результат тестовой части.

Нажмите на кнопку «Завершить работу», чтобы увидеть правильные ответы.

2 403 306
Уже готовятся к ЕГЭ, ОГЭ и ВПР.
Присоединяйся!
Мы ничего не публикуем от вашего имени
или
Ответьте на пару вопросов
Вы...
Ученик Учитель Родитель
Уже зарегистрированы?