Задание № 21835
Чук и Гек поочередно извлекают из трех ящиков шары. Своим ходом каждый может взять из любого ящика (но только из одного) любое количество шаров. Выигрывает тот, кто заберет последний шар. Кто из мальчиков может обеспечить себе победу независимо от игры соперника, если количество шаров в ящиках равно
A) 8, 9 и 9;
Б) 1, 2 и 3;
B) 8, 9 и 10?
Существует несколько исходов игры, которые гарантируют победу первому участнику,это (вне зависимости от последовательности ящиков): 1 0 0,N 1 1,N 1 0, N 0 0 , где N- любое натуральное число,и гарантированное проигрышные ситуации-1 1 0, 2 2 0. Исходя из этого будет идти решение задачи.
А) Чтобы выиграл Чук, нам необходимо привести Гека к варианту 110. Если Чук возьмет 8 шаров из первого ящика, то есть сравняет количество шаров только во втором и третьем, тогда Чуку остается каждый раз уравнивать количество шаров до того момента,пока не станет вариант 1 1 0. т.е. выиграет Чук
Б) Исходя из базовых ситуаций найдем ситуации выигрыша: M 2 0 (M>=3), 2 2 1,3 2 0 (их можно привести к ситуации проигрыша , то есть к 2 2 0). Ситуацию 1 2 3 возможно привести только к выигрышу,следовательно ,она проигрышна для первого, т.е. выиграет Гек.
В) В таком варианте Чук сможет выиграть, если будет сравнивать две цифры каждый раз, в конце дойдет до варианта 011 и победит. Это возможно в любом случае
Ответ: А) Чук;Б) Гек;В) Чук
Ответ:Нашли ошибку в задании? Выделите фрагмент и нажмите Ctrl + Enter.